Effects of radio

您所在的位置:网站首页 radio tagging Effects of radio

Effects of radio

2024-03-05 23:18| 来源: 网络整理| 查看: 265

The data were collected in a study on the post-fledging survival and range use of juvenile barn swallows that was carried out in 2000 (pilot study) and 2002 to 2004 (full project) in the Wauwilermoos area, an intensively cultivated plain of c.20 km2 near Lucerne, Switzerland (47°10’ N/8° 02’ E). Data of 560 barn swallow fledglings of 132 first and second broods at 60 farms were included. Further details on the study area and the study population are given in [15].

Radio-tagging

We caught barn swallow fledglings at their nest during the night of nestling Day 19 or 20. In 2000 (pilot study) the chicks were radio-tagged with Holohil LB2 transmitters (0.7 g, Holohil Inc., Carp, ON, Canada). In 2002 to 2004 we used radio-tags of our own construction [16, 17]. These differed from the LB2 transmitters in an extended life of 30 d (2002) to 55 d (2004). Due to technical improvements, the radiated power of these tags increased considerably from 2002 to 2004 (Table  1, [17]). All radio-tags (including battery and harness) had a mass of 650 to 750 mg, which represents 3.8 to 4.4% of the minimum fledgling mass (17 g).

Table 1 Sample sizes and technical specifications for the different types of markings used in the study Full size table

The transmitters (n = 538) were attached using a Rappole-type harness made from 0.5 mm elastic cord [18, 19]. The juveniles were also individually color-marked on the light plumage of the belly to allow identification after potential loss or failure of transmitters. A combination of two colors out of four (green, blue, red, none) was applied using waterproof pencil (Edding 3000®, Edding Inc., Ahrensberg, Germany). These patterns occurred repeatedly among families. Additionally, a family-specific mark was applied. To prevent premature departure the nest cups were closed using a flexible sheet of black plastic. The marked chicks were set back into the nest in complete darkness. We then waited 5 to 10 minutes until the birds had relaxed, and removed the cover.

It is important to ascertain that the marking technique has no effect on the target parameter of a study, which in this study was survival. Earlier studies did not find adverse effects of radio-tagging on small birds of c. 20 g (adult barn swallow [20]; great and coal tit [21]). Based on this evidence, we included only a small control group of untagged but color-marked birds. The treatment of these birds (n = 22) was identical to the above procedure except that no transmitter was attached. The most parsimonious model of swallow survival rates on the basis of the full sample (n = 538 radio-tagged birds) included a relationship between survival rate and time after fledging. Adding an effect of the type of marking (radio-tag vs. color mark) on survival did not improve parsimony (Table  2). Including an effect of tagging on survival resulted in a slight increase of the QAICc. However, in both models discerning color-marked and radio-tagged birds (ranks 2 and 3, Table  2) the differences in survival estimates for color-marked and radio-tagged individuals were very small (average daily survival over the first 15 days from fledging 0.956 ± 0.006 (s.e.) in radio-tagged and 0.932 ± 0.022 (s.e.) in color-marked birds, respectively). This further corroborates that radio-tagging had no measurable adverse effect in terms of apparent survival.

Table 2 Model selection for post-fledging survival probabilities of barn swallows Full size table Encounter histories

The families and independent juveniles were located twice per day. The observation sessions lasted one hour and included the location and visual identification of the birds, and the collection of behavioral data. Missing birds were searched within an area of approximately 100 km2 using fixed antenna stations on vantage points and by using vehicles equipped with an omni-directional antenna. Additionally, flocks of swallows in the study area and groups of birds roosting inside buildings were searched for individuals with color-marks. We never recorded radio-tagged birds leaving the area within the first three weeks post-fledging. Even after wider excursions, all birds returned close (1 to 2 km) to the nest sites. During weeks 4 to 5 post-fledging, the birds regularly roosted in nearby wetlands. Thus, juvenile barn swallows did not emigrate from the area up to this age, except a few individuals from late second broods that may have left the study area for migration (Figure  2, latest encounter interval). All telemetry and visual observations were used to build daily encounter histories for the analysis of survival and re-encounter rates (fledging day 0 = first encounter).

Statistical analyses

The central issue is that even with the use of radio-tags, re-encounter rates for individuals are normally below 1.0 and may vary largely, since signals may be temporarily missed although the individual is present and alive. For example, topographic characteristics of the study area can restrict the detection ranges, individuals may hide in places that shield radiation (for example, underground or in tree holes), and adverse weather conditions (for example, heavy rain) may temporarily reduce the detection probability of transmitters. Also, animals may move temporally out of the operational range of the transmitter but not disperse from the study area. Setting of transmitter duty cycles too restrictively may also result in missed re-encounters [5].

We used Cormack-Jolly-Seber (CJS) mark-recapture models [1, 22] in the software package MARK [23]. The individual encounter histories were used to model probabilities of apparent survival (Φ) and re-encounters (p). We aggregated encounter histories for 0 time intervals of 1 to 10 days each (post-fledging days 1, 2 to 5, 6 to 9, 10 to 13, 14 to 17, 18 to 21, 22 to 28, 29 to 40; Day 0 = fledging day, figures indicate the midpoints of each re-encounter interval). Encounter histories were grouped according to the type of marking (type: color-marked, 13 μW, 23 μW, 35 μW, 48 μW). A goodness-of-fit test was performed on the basis of a highly parameterized model, including variation in survival in relation to age and differences between first and second broods, and variation of the re-encounter rate in relation to age and transmitter type, but excluding interactions (Φ (brood·age) p (type·age)). We performed a parametric bootstrap with n = 1,000 replicates. The observed deviance (dev. = 3,025.14) did not differ significantly from the simulated deviances (mean dev. = 2,950.38 ± 10.04 s.e., P = 0.22), indicating that our set of models adequately fitted the data. The over-dispersion factor ĉ was 1.192. Slight over-dispersion was likely to occur, since cohorts were not equal in size, and fledglings of the same family were treated as independent (see also [22]). In contrast to data obtained from capture-mark-recapture by fixed trap sites, data obtained from radio-tracking are not area-sensitive because the search area can be adjusted to the animals’ behavior; estimates of apparent survival are not affected by variation in individual range use. Thus, while re-encounter rates of wide-ranging individuals may decrease, estimates of apparent survival are not biased by altered range use. Estimates of apparent survival are thus relative to the maximum area under survey.

Sub-sampling

To simulate the effects of sample size on the estimates of survival (Φ) and re-encounter rate (p) we drew a total of 50 sub-samples of varying size from the full sample of 538 radio-tagged individuals. Random sub-samples were drawn with replacement and the individual histories were randomly re-arranged using the random number generator in the software Excel (Microsoft Switzerland GmbH, Bern, Switzerland). To further evaluate the performance of model selection we split the full sample into 10 random sub-samples of 50 individuals each, that is, without replacement. For all sub-samples, the 16 pre-defined models implemented in MARK were compared (combinations of the following encounter and survival models: constant: Φ (.)/p(.); time(age)-dependence: Φ (t)/p(t); tag-dependence: Φ (g)/p(g); time- and tag-dependence (interaction): Φ (g*t)/p(g*t)). The over-dispersion factor ĉ of 1.192 was also applied to these models.

Capture, radio-tagging and tracking was conducted under license of the Swiss Federal Offices for the Environment and for Communication (1000130413.05, technical license; F044-0799 ringers’ license).



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3